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ABSTRACT: Constitutive equations are derived for the nonlinear viscoelastic behavior
of amorphous glassy polymers. The model is based on the theory of cooperative relax-
ation in a version of the trapping concept. Stress–strain relations are applied to fit
experimental data for polycarbonate in the sub-yield and post-yield regions. Fair
agreement is demonstrated between observations and results of numerical simulation.
It is revealed that yielding causes substantial changes in the energy landscape of
amorphous polymers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2383–2393, 2001
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INTRODUCTION

This paper is concerned with the viscoelastic and
viscoplastic behavior of amorphous glassy poly-
mers at the first stage of inelastic deformation
when no plastic alignment of long chains occurs
and the material remains isotropic at the macro-
level.1,2 Constitutive equations in viscoplasticity
of amorphous polymers are traditionally postu-
lated by analogy with those for crystalline mate-
rials3–6 Three shortcomings of this approach may
be mentioned:

1. Viscoplasticity of amorphous and crystalline
media are driven by different physical mech-
anisms.7 Yielding of crystalline materials is
conventionally associated with propagation
of glide dislocations, which are not observed
in polymers.8 On the other hand, the
substantial effect of pressure on the yield
strain9,10 is typical of amorphous polymers
and is not revealed in most metals.

2. Two types of yielding, ductile (caused by
shear banding) and brittle (induced by
crazing), are not distinguished.11

3. The yield point and the residual stresses
(strains) are severely affected by the mate-
rial viscosity which makes problematic the
very definition of plasticity in experi-
ments12 and stimulates attempts to de-
scribe the mechanical response of amor-
phous polymers in the framework of non-
linear viscoelasticity.13,14

Interaction between plastic flow and stress re-
laxation in amorphous and semicrystalline poly-
mers has attracted substantial attention in the
past decade. Unlike early studies concerned
mainly with the influence of viscosity on the yield
stress,12,15,16 recent works concentrate on the
analysis of plasticity-induced changes in relax-
ation spectra.17–19

The viscoplastic behavior of polymers at rela-
tively small strains is conventionally treated as a
result of chain-segment rotation.20–22 A disad-
vantage of this approach is that it requires unre-
alistic activation volumes16 and activation ener-
gies23 to fit observations. Physically plausible val-
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ues of adjustable parameters may be found,
provided rotation of individual strands is replaced
by cooperative rearrangement of long chain when
scores of neighboring strands simultaneously
change their position.16 The pattern of “regions of
large shear stresses” was introduced in the early
1980s24,25 to describe the response of metallic
glasses based on the concept of “islands of mobil-
ity”,26 and it is conceptually close to the Adam–
Gibbs theory27 for the viscoelastic behavior of
amorphous polymers. An important question in
modeling the time-dependent response of amor-
phous media is whether the cooperative regions
responsible for viscoelastic and viscoplastic phe-
nomena have the same length scale.

The correlation length for viscoelastic flow
units28 has been thoroughly studied in the recent
years, and it is estimated as 0.5–1.5 nm in the
vicinity of the glass transition temperature
Tg.29,30 Direct measurements of the characteristic
size of plastic t-defects23 are absent, whereas cal-
culations based on the activation volume model
provide values in the range of 10 nm.7 This size
may be treated as a lower limit, whereas other
sources give essentially higher values of the order
of 103 nm.8,11,31,32

With reference to these data, we assume that
the characteristic length of plastic regions sub-
stantially exceeds that for viscoelastic flow units.
Because any plastic island of mobility contains a
large number of viscoelastic regions, only proper-
ties of an “average” rearranging domain may be
taken into account. This assumption implies that
at the first stage of yielding, when the specimen
remains homogeneous at the macro-level,
changes in the viscoelastic response are deter-
mined by the current level of strains only, both for
ductile and brittle modes of fracture.

The objective of this study is to derive a consti-
tutive model that accounts for the effect of yield-
ing on relaxation spectra of amorphous polymers
and to verify stress–strain relations by compari-
son of experimental data for polycarbonate with
results of numerical simulation.

Adopting the trapping concept,33–35 we treat a
glassy polymer as an ensemble of cages where
flow units are trapped. In the phase space, any
cage is thought of as a potential well on the en-
ergy landscape, at the bottom level of which a flow
unit is located. Because of thermal fluctuations,
flow units can hop to higher energy levels, but
they cannot leave their traps (the pattern of er-
godicity breaking36).

Referring to the transition-state theory,37 we
suppose that some liquid-like (reference) state ex-
ists on the energy landscape, where flow units
change their configurations. When a region
reaches the liquid-like level in a hop, stresses
totally relax in it. If a flow unit hops below the
reference level, it lands in its potential well with-
out changes. The depth of a potential well with
respect to the reference state of a stress-free ma-
terial is determined by its energy w. We set v 5 0
for the initial reference state and w . 0 for an
arbitrary trap. With reference to the random en-
ergy model,39 the distribution of traps with vari-
ous potential energies w is described by the
Gaussian formula

p~w! 5
1

Î 2p ¥
expF2

~w 2 W!2

2 ¥2 G (1)

with the mean value W (which characterizes the
average energy of a disordered medium) and the
standard deviation S. Equation 1 is applicable
provided that the probability of traps with nega-
tive energies is small compared to unity

E
2`

0

p~w! dw ! 1 (2)

The viscoelastic response of glassy polymers is
modeled as a sequence of random hops of rear-
ranging regions (driven by thermal fluctuations)
with respect to a fixed energy landscape.38 For a
linear material, the liquid-like energy level is
fixed, and relaxing regions are treated as linear
elastic media. To predict the nonlinear behavior,
we assume that the reference level changes its
position with respect to the free energy hypersur-
face and the response of individual flow units is
nonlinear.

Viscoplasticity of amorphous polymers is mod-
eled as time-varying transformations of the en-
ergy landscape. We propose the following scenario
for active uniaxial loading (the strain e monoton-
ically increases) based on the random energy
model (eq. 1). The mean energy of a disordered
medium W is independent of mechanical factors
and temperature T (an analog of the conservation
law for the potential energy of cages). Below the
yield point, the distribution of traps is indepen-
dent of strains and S is constant. At the yield
point, the quantity S suffers a positive jump,
which reflects activation of “regions of large shear
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stresses” induced either by formation of shear
bands or by crazing. In the post-yield region, the
standard deviation of potential energies of cages
S monotonically increases with strains, which re-
flects “propagation of plastic defects”.

The study aims to describe in detail changes in
the viscoelastic response of amorphous polymers
driven by yielding and to support this scenario by
experimental data for polycarbonate. The paper is
divided into sections dealing with the kinetics of
rearrangement of flow units (see Rearrangement
of Flow Units), derivations of nonlinear constitu-
tive equations for a polymer (see Stress–Strain
Relationships), comparison of stress–strain rela-
tions with observations (see Comparison with Ex-
perimental Data), and concluding remarks (see
Conclusions).

REARRANGEMENT OF FLOW UNITS

Let q(v)dv be the probability for a flow unit to
reach (in a hop) the energy level that exceeds the
bottom level of its potential well by some value
belonging to the interval [v, v 1 dv]. According to
the extreme-value statistics,40 we set q(v)
5 aexp(2av), where a is a material constant. The
current position of the liquid-like energy level
with respect to the reference level of a stress-free
medium is denoted as 2V(t) [in agreement with
observations, we suppose that external loads
cause a descent of the liquid-like level]. The prob-
ability for a relaxing region in a trap with the
current potential energy w to reach the reference
state in an arbitrary hop is given by

Q~t, w! 5 E
w2V~t!

`

q~v! dv 5 exp@2a~w 2 V~t!!#

(3)

The average rate of hops in a cage G is assumed to
depend on temperature T only. Confining our-
selves to isothermal processes, we treat G as a
constant. Multiplying G by the probability to
reach the reference state in a hop Q, we find the
rate of rearrangement in a trap with the current
potential energy w

L~t, w! 5 G exp@2a~w 2 V~t!!# (4)

Denote by J0 the (time-uniform) concentration of
traps per unit mass and by J(t, t, w0) the current

concentration of traps that had potential energy
w0 before loading and where the last rearrange-
ment had occurred before time t , t. Let w 5 w(t,
w0) be the current (at time t) potential energy of a
cage that had the energy w0 before loading.
Equating the relative rates of reaching the liquid-
like state to L, we arrive at the differential equa-
tions

­J

­t ~t, 0, w0! 5 2L~t, w~t, w0!!J~t, 0, w0! (5)

­2J

­t­t
~t, t, w0! 5 2L~t, w~t, w0!!

­J

­t
~t, t, w0! (6)

Because flow units cannot leave their cages, the
function J(t, t, v0) is connected with the initial
probability density of traps p(v0) by the formula

J~t, t, w0! 5 J0p~w0! (7)

The concentration of relaxing regions in traps
with initial potential energies located in the in-
terval [v0, v 1 dv0] that rearrange per unit time
equals J0L(t, v(t, v0))p(v0)dv0. Neglecting the du-
ration of a hop (a few picoseconds35) compared
with the characteristic time of stress relaxation,
we find that the same number of flow units land
in their traps per unit time

­J

­t
~t, t, w0!ut5t 5 J0L~t, w~t, w0!!p~w0! (8)

The solutions of eqs. 5 and 6 with initial condi-
tions in eqs. 7 and 8 read

J~t, 0, w0! 5 J0p~w0!expF2 E
0

t

L~s, w~s, w0!! dsG
(9)

­J

­t
~t, t, w0! 5 J0p~w0!L~t, w~t, w0!!

3 expF2 E
t

t

L~s, w~s, w0!! dsG (10)

STRESS–STRAIN RELATIONS

Because a flow unit totally relaxes when it
reaches the liquid-like state, its natural (stress-
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free) configuration coincides with the actual (de-
formed) configuration of the bulk medium at the
instant of rearrangement. For uniaxial deforma-
tion, the strain from the natural configuration of
a relaxing region to its actual configuration at
time t is given by

e*~t, t! 5 e~t! 2 e~t! (11)

where e is the macro-strain, and t # t is the last
instant when the region has rearranged. The me-
chanical energy of a flow unit U(e*(t, t)) satisfies
the conditions

U~0! 5 0 and
­U
­e

~0! 5 0 (12)

Summing the mechanical energies of flow units
and neglecting the energy of their interaction, we
find the mechanical energy of an amorphous poly-
mer (per unit mass)

F~t! 5 U~e~t!! E
0

`

J~t, 0, w0! dw0 1 E
0

t

U~e~t!

2 e~t!! dt E
0

` ­J

­t
~t, t, w0! dw0 (13)

At small strains, the stress s is expressed in
terms of the strain e by the formula

s~t! 5 r
­F~t!
­e~t! (14)

where r is mass density in the stress-free state.
Substitution of eq. 13 into this equality results in
the constitutive equation

s~t! 5 rF­U
­e

~e~t!! E
0

`

J~t, 0, w0! dw0

1 E
0

t ­U
­e

~e~t! 2 e~t!! dt E
0

` ­J

­t
~t, t, w0! dw0G

(15)

For conventional relaxation tests with

e~t! 5 0 ~t , 0! and e~t! 5 e ~t . 0! (16)

eqs. 10 and 15 imply that

E~t, e! 5 E0~e! E
0

`

p~w0!

3 expF2 E
0

t

L~s, w~s, w0!! dsG dw0 (17)

where

E~t, e! 5
s~t!

e
and E0~e! 5 rJ0

1
e

­U
­e

~e! (18)

We assume that the position of the reference state
V is uniquely determined by the current strain e,
V 5 V0(e), substitute eqs. 1 and 4 into eq. 17 and
arrive at the formula

E~t, e! 5
E0~e!

Î 2p ¥
E

0

`

3 expF2S~w0 2 W!2

2 ¥2 1 Q~e!exp~2aw!tDG dw0

(19)

where

Q~e! 5 G exp@aV0~e!# (20)

For the Gaussian distribution of energies of cages
(eq. 1), transformation of the energy landscape
may be described by the linear function

w 5 Aw0 1 B (21)

where the coefficients A and B are determined by
mechanical factors. It follows from the energy
conservation law Ew 5 Ew0, where E denotes the
mathematical expectation, that B 5 (1 2 A)W.
This equality together with eq. 21 implies that

w0 2 W 5
w 2 W

A (22)

Combining this formula with eq. 19 and bearing
in mind that for relaxation tests, A is a function of
strain e, we find that
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E~t, e! 5
E0~e!

Î 2p ¥0 ~e! E
0

`

3 expF2S~w 2 W!2

2 ¥0
2 ~e!

1 Q~e!exp~2aw!tDG dw (23)

where S0(e) 5 A(e)S. In the new notation z 5 av,
W* 5 aW, and S* 5 aS0, this equality reads

E~t, e! 5
E0~e!

Î 2p ¥* ~e! E
0

`

3 expF2S~z 2 W*!2

2 ¥*
2 ~e!

1 Q~e!exp~2z!tDG dz (24)

Equation 24 is determined by two adjustable pa-
rameters, G and W*, and three material functions,
E0(e), S*(e), and V*(e), where V* 5 aV0. Because
one of the constants G and W* in eq. 24 may be
chosen arbitrarily, we set W* 5 20 in fitting ob-
servations. At small strains, the functions E0 and
ln Q, and S* are approximated by the following
linear dependencies, respectively:

E0~e! 5 a0 2 a1e (25)

ln Q~e! 5 b0 1 b1e (26)

¥* ~e! 5 c0 1 c1e (27)

with parameters ak, bk, and ck found by matching
observations.

COMPARISON WITH EXPERIMENTAL DATA

To validate eq. 24, we fit observations in tensile
and torsional relaxation tests for polycarbonate.
We begin with experimental data measured in the
sub-yield region at room temperature. For a de-
tailed description of the experimental procedure,
see Colucci et al.41 Figure 1 demonstrates fair
agreement between experimental data and re-
sults of numerical simulation with strain-inde-
pendent parameters W* and S* (yielding is ne-
glected). Figure 2 shows that eqs. 25, 26 ade-
quately predict the effect of strains on the Young
modulus E0 and the rate of hops Q.

To analyze transition from the nonlinear vis-
coelastic to viscoplastic behavior, we match obser-
vations for polycarbonate at various tempera-
tures T from 263 to 67 °C. A description of the
experimental procedure can be found in Litt and
Torp.42 Figures 3 and 4 evidence that eq. 24 cor-

Figure 1 The Young modulus E (GPa) versus time t
(s) for polycarbonate at room temperature. Key: (E)
experimental data;44 (O) predictions of the model with
S* 5 10.4; (curve 1) e1 5 0.01; (curve 2) e1 5 0.015;
(curve 3) e1 5 0.02; (curve 4) e1 5 0.025; (curve 5) e1

5 0.03.

Figure 2 The parameters E0 (GPa; F) and Q (s21; E)
versus strain e for polycarbonate at room temperature.
Symbols represent treatment of observations.41 Solid
lines represent approximations of experimental data by
eqs. 25, 26, with a0 5 2.55, a1 5 30.35 and b0 5 23.00,
b1 5 179.40.
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rectly predicts relaxation curves in the sub-yield,
as well as in the post-yield regions. Figure 5 dem-
onstrates that the standard deviation of energies
of traps S* is practically independent of temper-

ature in the region of nonlinear viscoelasticity.
Figure 6 reveals that this parameter remains con-
stant unless the longitudinal strain e exceeds the

Figure 3 The stress s (MPa) versus time t (s) for
polycarbonate at T 5 263 °C (E) and T 5 224 °C (F).
Symbols represent experimental data.42 Solid lines
represent their approximation by the model. Curve 1a:
e 5 0.0242; curve 1b: e 5 0.0405; curve 2a: e 5 0.0254;
curve 2b: e 5 0.0390; curve 2c: e 5 0.0530.

Figure 4 The stress s (MPa) versus time t (s) for
polycarbonate at T 5 26 °C (E) and 67 °C (F). Symbols
represent experimental data.42 Solid lines represent
their approximation by the model. Curve 1a: e 5 0.185;
curve 1b: e 5 0.0320; curve 1c: e 5 0.0508; curve 2a: e
5 0.0193; curve 2b: e 5 0.0331.

Figure 5 The parameter S* versus temperature
T (°C) for polycarbonate in the sub-yield region. Circles
represent the treatment of observations.42 Solid line
represents the approximation of experimental data by
the linear function S* 5 b0 1 b1T, with b0 5 8.09 and
b1 5 20.0012.

Figure 6 The parameter S* versus strain e for poly-
carbonate at T 5 224 °C (E) and T 5 26 °C (F).
Symbols represent treatment of observations.42
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yield strain ey, and it jumps to substantially
higher values in the post-yield region. The effect
of strain e on the initial modulus E0 and the rate
of hops Q is depicted in Figures 7 and 8. Figure 7
demonstrates that eqs. 25–27 correctly predict a
decrease in the elastic modulus with strain, and
the coefficient a1 is practically independent of
temperature T. Figure 8 shows that Q increases
with e, in agreement with eqs. 25–27, and the
coefficient b1 weakly depends on temperature T
(except for the curve corresponding to T 5 67 °C).
The difference between the coefficient b1 at T
5 67 °C and that at other temperatures may be
explained by changes in the type of yield, when
“brittle” yielding driven by crazing turns into
“ductile” yielding associated with shear band-
ing.11

To study transition from the sub-yield to the
post-yield response in detail, we fit experimental
data for polycarbonate at T 5 50 °C. For a de-
tailed description of the experimental procedure,
we refer to Ricco and Smith.43 Fair agreement
between results on numerical simulation and ex-
perimental data is demonstrated in Figure 9. The
parameters S*, E0, and Q are plotted versus the
longitudinal strain e in Figures 10–12.

Figure 10 reveals that the standard deviation
of energies of traps S* is strain-independent in

Figure 9 The Young modulus E (GPa) versus time t
(s) for polycarbonate at 50 °C. Circles represent exper-
imental data.43 Solid lines represent their approxima-
tion by the model. Curve 1 e1 5 0.007; curve 2: e1

5 0.020; curve 3: e1 5 0.031; curve 4: e1 5 0.042; curve
5: e1 7 5 0.047; curve 6: e1 5 0.052; curve 7: e1 5 0.0625.

Figure 7 The initial Young modulus E (GPa) versus
strain e for polycarbonate in the sub-yield region. Cir-
cles represent treatment of observations.42 Solid lines
represent approximations of experimental data by eq.
25. Curve 1: T 5 263 °C, a0 5 2.68, a1 5 220.82; curve
2: T 5 224 °C, a0 5 2.56, a1 5 220.30; curve 3: T 5 26
°C, a0 5 2.44, a1 5 217.88; curve 4: T 5 67 °C, a0

5 2.32, a1 5 217.14.

Figure 8 The parameter Q (s21) versus strain e for
polycarbonate in the sub-yield region. Circles represent
treatment of observations.42 Solid lines represent ap-
proximations of experimental data by eq. 26. Curve 1: T
5 263 °C, b0 5 23.50, b1 5 73.86; curve 2: T 5 224 °C,
b0 5 24.17, b1 5 92.11; curve 3: T 5 26 °C, b0 5 24.47,
b1 5 67.87; curve 4: T 5 67 °C, b0 5 25.81, b1 5 270.53.
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the sub-yield region, and it grows linearly with
strain in the post-yield region. According to Fig-
ures 1, 5, 6, and 10, practically the same values of
S* have been found for all three kinds of polycar-

bonate in the range of temperatures from 270 to
70 °C.

Figure 11 shows that the initial Young modu-
lus E0 suffers a jump at the yield point, whereas
the parameter a1 does not change at transition
from the sub-yield region to the post-yield one. To
explain the jump of E0 at the point e 5 ey, it
suffices to suppose that the rigidity of a relaxing
region depends on the potential energy of the cage
where it is trapped. This supposition implies that
transformation of the energy landscape (eq. 21;
which is reflected by an increase in the standard
deviation S*) changes rigidities of flow units and,
as a consequence, leads to an increase in the
“average” rigidity E0.

Figure 12 demonstrates that the parameter Q
increases with e, and the rate of its growth in the
post-yield region exceeds that in the sub-yield
domain. Figures 2 and 12 imply practically the
same values of b1 for two kinds of polycarbonate
below the yield strain, whereas Figures 8 and 12
result in similar values of b1 in the post-yield
region.

According to Figure 5, the parameter S* (which
determines the energy landscape in the random
energy model) weakly depends on temperature
far below the glass transition temperature Tg.

Figure 10 The parameter S* versus strain e for poly-
carbonate at 50 °C. Circles represent treatment of ob-
servations.43 Solid lines represent approximation of ex-
perimental data by eq. 27, with c0 5 7.0, c1 5 0.0 (curve
1) and c0 5 14.83, c1 5199.84 (curve 2).

Figure 11 The initial Young modulus E0 (GPa) ver-
sus strain e for polycarbonate at 50 °C. Circles repre-
sent treatment of observations.43 Solid lines represent
approximation of experimental data by eq. 27, with a1

5 1.94, a1 5 13.64 (curve 1) and a0 5 2.25, a1 5 13.44
(curve 2).

Figure 12 The parameter Q (s21) versus strain e for
polycarbonate at 50 °C. Circles represent treatment of
observations.43 Solid lines represent approximation of
experimental data by eq. 26, with b0 5 24.12, b1

5 165.21 (curve 1) and b1 5 220.84, b1 5 514.01 (curve
2).
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To analyze the effect of temperature on yield-
ing in the vicinity of Tg, we approximate experi-
mental data for equilibrated polycarbonate. For a
description of the experimental procedure, see
O’Connell and McKenna.44

Figure 13 evidences that eq. 24 adequately pre-
dicts experimental data in the temperature range
from Tg 2 20 to Tg.

According to Figure 14, the standard deviation
of energies of traps S* decreases with T up to the
temperature Tg 5 25 K, where yielding of the
specimen occurs at the strain used in the test, and
afterward, S* rapidly increases with temperature.
The growth of S* in the post-yield region qualita-
tively agrees with results depicted in Figures 6
and 10. In the latter figures, the parameter S*
increases with strain when the current strain e
exceeds the yield strain ey (remaining constant at
a fixed temperature), whereas the increase of S*
observed in Figure14 is driven by a decrease in ey
with temperature (whereas the current strain e is
constant).

The dependence of the rate of hops Q on tem-
perature in the sub-Tg region is plotted in Figure
15. This figure implies that (i) the position of the
current liquid-like level V linearly decreases with
temperature T both in the sub-yield and in the

post-yield regions, but the effect of temperature is
stronger when the yield point is crossed; and (ii)
fitting data for S* and Q by the linear functions

ln Q 5 b0 1 b1 (28)

and

¥* 5 c0 1 c1T (29)

provides practically the same yield temperature
Ty ' 137 °C determined as a temperature at
which the coefficients bk and ck suffer jumps of
amplitude.

CONCLUSIONS

Constitutive equations have been derived for the
nonlinear viscoelastic response of amorphous
glassy polymers. The model is based on the theory
of cooperative relaxation in a version of the trap-
ping concept. Stress–strain relations are applied
to fit experimental data for polycarbonate in ten-
sile and torsional relaxation tests. Fair agree-
ment is demonstrated between results of numer-

Figure 14 The parameter S* versus temperature T
(°C) for equilibrated polycarbonate. Circles represent
treatment of observations.44 Solid lines represent ap-
proximation of experimental data by eq. 29, with c0

5 15.32, c0 5 210 (curve 1) and c0 5 248.32, c1 5 0.37
(curve 2).

Figure 13 Torque M (N z m) versus time t (s) for
polycarbonate equilibrated at temperature T °C. Cir-
cles represent experimental data.44 Solid lines repre-
sent predictions of the model. Curve 1: T 5 124.1; curve
2: T 5 126.2; curve 3: T 5127.3; curve 4: T 5 132.5;
curve 5: T 5 133.2; curve 6: T 5 133.9; curve 7: T
5135.5; curve 8: T 5 135.6; curve 9: T 5 138.7; curve
10: T 5 139.8; curve 11: T 5 139.9; curve 12: T 5 140.6.

YIELDING EFFECTS ON VISCOELASTIC BEHAVIOR OF AMORPHOUS GLASSY POLYMERS 2391



ical simulation and observations in a wide range
of temperatures and strains, which confirms our
hypothesis that plastic and viscoelastic coopera-
tive regions have different characteristic lengths.
The following conclusions are drawn:

1. The energy landscape of an amorphous
polymer is independent of strains in the
sub-yield region and it suffers dramatic
changes when the yield point is reached. In
the post-yield region, an increase in strain
causes rather modest changes in the distri-
bution of depths of potential wells.

2. The current energy level of the liquid-like
state with respect to the energy landscape
V descends with strain e both in the sub-
yield and in the post-yield regions, but the
influence of mechanical factors is stronger
when the current strain exceeds the yield
strain ey (Figures 12 and 15).

3. The initial Young modulus E0 monotoni-
cally decreases with strain e except for a
yield point, where it may suffer a positive
jump (Figure 11) caused by transformation
of the energy landscape.

It is worth noting that no qualitative difference
has been found between the model parameters for

brittle and ductile yielding. This result may be
explained by the fact that in both cases the char-
acteristic length of “plastic defects” substantially
exceeds that of cooperatively rearranging regions.
The difference between the two kinds of yielding
may become essential for time-dependent loading
processes, which will be the subject of a subse-
quent study.
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acknowledged.
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